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1 Probability and You

Whether you like it or not, probabilities rule your life. If you have
ever tried to make a living as a gambler, you are painfully aware
of this, but even those of us with more mundane life stories are
constantly affected by these little numbers.

Example 1.1. Some examples from daily life where probability
calculations are involved are the determination of insurance premi-
ums, the introduction of new medications on the market, opinion
polls, weather forecasts, and DNA evidence in courts. Probabil-
ities also rule who you are. Did daddy pass you the X or the Y
chromosome? Did you inherit grandma’s big nose?

Meanwhile, in everyday life, many of us use probabilities in our
language and say things like “I’'m 99% certain” or “There is a one-
in-a-million chance” or, when something unusual happens, ask the
rhetorical question “What are the odds?”. [17, p 1]

1.1 Randomness

1.2. Many clever people have thought about and debated what
randomness really is, and we could get into a long philosophical
discussion that could fill up a whole book. Let’s not. The French
mathematician Laplace (1749-1827) put it nicely:

“Probability is composed partly of our ignorance, partly
of our knowledge.”



Inspired by Laplace, let us agree that you can use probabilities
whenever you are faced with uncertainty. [17, p 2]

1.3. Random phenomena arise because of [13]:
(a) our partial'ignorance of the generating mechanism

(b) thelaws governing the phenomena may be fundamentally ran-

dom (as in [quantum mechanics; see also Ex. [1.7])

a2 inees, . .
(¢) our unwillingness to carry out exact analysis because it is not

worth the trouble

Example 1.4. Communication Systems [23]: The essence of
communication is randomness.

(a) Random Source: The transmitter is connected to a random
source, the output of which the receiver cannot predict with
certainty.

o If a listener knew in advance exactly what a speaker
would say, and with what intonation he would say it,
there would be no need to listen!

(b) Noise: There is no communication problem unless the trans-
mitted signal is disturbed during propagation or reception in
a random way.

(c) Probability theory is used to evaluate the performance of com-
munication systems.

Example 1.5. Random numbers are used directly in the transmis-
sion and security of data over the airwaves or along the Internet.

(a) A radio transmitter and receiver could switch transmission
frequencies from moment to moment, seemingly at random,
but nevertheless in synchrony with each other.

(b) The Internet data could be credit-card information for a con-
sumer purchase, or a stock or banking transaction secured by
the clever application of random numbers.



Example 1.6. Randomness is an essential ingredient in games of
all sorts, computer or otherwise, to make for unexpected action
and keen interest.

Example 1.7. On a more profound level, quantum physicists
teach us that everything is governed by the laws of probability.
They toss around terms like the Schrodinger wave equation and
Heisenberg’s uncertainty principle, which are much too difficult for
most of us to understand, but one thing they do mean is that the
fundamental laws of physics can only be stated in terms of proba-
bilities. And the fact that Newton’s deterministic laws of physics
are still useful can also be attributed to results from the theory of
probabilities. [I7, p 2]

1.8. Most people have preconceived notions of randomness that
often differ substantially from true randomness. Truly random
data sets often have unexpected properties that go against intuitive
thinking. These properties can be used to test whether data sets
have been tampered with when suspicion arises. [21, p 191]

o [14, p 174]: “people have a very poor conception of random-
ness; they do not recognize it when they see it and they cannot
produce it when they try”

Example 1.9. Apple ran into an issue with the random shuffling
method it initially employed in its iPod music players: true ran-
domness sometimes produces repetition, but when users heard the
same song or songs by the same artist played back-to-back, they
believed the shuffling wasn’t random. And so the company made
the feature “less random to make it feel more random,” said Apple

i, founder Steve Jobs. [14], p 175]
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oseigmert Background on Some Frequently Used Examples

Probabilists love to play with coins and dice. We like the idea of
tossing coins, rolling dice, and drawing cards as experiments that
have equally likely outcomes.

1.10. Cown flipping or coin tossing is the practice of throwing
a coin in the air to observe the outcome.
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When a coin is tossed, it does not necessarily fall heads or
tails; it can roll away or stand on its edge. Nevertheless, we shall
agree to regard “heads” (H) and “tails” (T) as the only possible
outcomes of the experiment. [4, p 7]

e Typical experiment includes

o “Flip a coin N times. Observe the sequence of heads and
tails” or “Observe the number of heads.”

1.11. Historically, dice is the plural of die, but in modern stan-
dard English dice is used as both the singular and the plural. [Ex-
cerpted from Compact Oxford English Dictionary.|

e Usually assume six-sided dice

e Usually observe the number of dots on the side facing up-
wards.

1.12. A complete set of cards is called a pack or deck.

(a) The subset of cards held at one time by a player during a
game is commonly called a hand.

(b) For most games, the cards are assembled into a deck, and
their order is randomized by shuffling.

(¢) A standard deck of 52 cards in use today includes thirteen
ranks of each of the four French suits.

e The four suits are called spades (#), clubs (&), hearts
(©), and diamonds (<{»). The last two are red, the first
two black.

(d) There are thirteen face values (2,3, ..., 10, jack, queen, king,
ace) in each suit.

e Cards of the same face value are called of the same kind.

e “court” or face card: a king, queen, or jack of any suit.



1.3 A Glimpse at Probability Theory

1.13. Probabilities are used in situations that involve random-
ness. A probability is a number used to describe how likely
something is to occur, and probability (without indefinite arti-
cle) is the study of probabilities. It is “the art of being certain
of how uncertain you are.” [I7, p 2-4] If an event is certain
to happen, it is given a probability of 1. If it is certain not to
happen;it-has a probability of 0. [7, p 66]

1.14. Probabilities can be expressed as fractions, as decimal num-
bers, or as percentages. If you toss a coin, the probability to get
heads is 1/2, which is the same as 0.5, which is the same as 50%.
There are no explicit rules for when to use which notation.

e In daily language, proper fractions are often used and often
expressed, for example, as “one in ten” instead of 1/10 (“one
tenth”). This is also natural when you deal with equally likely
outcomes.

e Decimal numbers are more common in technical and sci-
entific reporting when probabilities are calculated from data.
Percentages are also common in daily language and often with
“chance” replacing “probability.”

e Meteorologists, for example, typically say things like “there
is a 20% chance of rain.” The phrase “the probability of rain
is 0.2” means the same thing.

e When we deal with probabilities from a theoretical viewpoint,
we always think of them as numbers between 0 and 1, not as
percentages.

e See also 3.5

[17’ p 10] I”‘D'Ca'wm'\'s O‘F ?”’\m]”"‘ﬁy H—Cor//
Definition 1.15. Important terms [13]:

(a) An activity or procedure or observation is called a random
experiment if its outcome cannot be predicted precisely be-
cause the conditions under which it is performed cannot be
predetermined with sufficient accuracy and completeness.
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e The term “experiment” is to be construed loosely. We do
not intend a laboratory situation with beakers and test
tubes.

e Tossing/flipping a coin, rolling a dice, and drawing a card
from a deck are some examples of random experiments.

(b) A random experiment may have several separately identifiable
outcomes. We define the sample space 2 as a collection
of all possible (separately identifiable) outcomes/results/mea-
surements of a random experiment. FEach outcome (w) is an
element, or sample point, of this space.

e Rolling a dice has six possible identifiable outcomes
(1,2,3,4,5, and 6).

(c) Events are sets (or classes) of outcomes meeting some spec-
ifications.

o Anyf event is a subset of €.

e Intuitively, an event is a statement about the outcome(s)
of an experiment.

1.16. Let’s consider a random experiment and a specific event A.

e For example, toss two (fair) dice. Let A be the event that the
sum 1s 11.

After the experiment has been performed, the event A may
“occur” or “not occur”. The probability that it occurs is denoted

by P(A).
e We shall see later that P(A) for the example above is 1/18.

1.17. The goal of probability theory is to compute the probability
of various events of interest. Because events are, by definitions, sets
of outcomes. Hence, we calculate the corresponding probabilities,
we are dealing with a sét function which is defined on subsets of

Q.

'For our class, it may be less confusing to allow event A to be any collection of outcomes
(, i.e. any subset of Q).

In more advanced courses, when we deal with uncountable €, we limit our interest to only
some subsets of ). Technically, the collection of these subsets must form a o-algebra.
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1.18. Question: How to interpret the value of probability for
event and event? What does the value of P(A) tell us about event
A?

Example 1.19. The statement “when a coin is tossed, the prob-
ability to get heads is 1/2 (50%)” is a precise statement.

(a) It tells you that you are as likely to get heads as you are to
get tails.

(b) Another way to think about probabilities is in terms of aver-
age long-term behavior. In this case, if you toss the coin
repeatedly, in the long run you will get roughly 50% heads
and 50% tails.

Although the outcome of a random experiment is unpredictable,
there is a statistical regularity about the outcomes. What you
cannot be certain of is how the next toss will come up. [17. p4]

Example 1.20. Return to the coin tossing experiment ¥ Ex. (1.19; R(A) “)
Relative 'F"e%.
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1.21. Long-run frequency interpretation: If the probability

of an event A in some actual physical experiment is p, then we
believe that if the experiment is repeated independently over and
over again, then a theorem called the law of large numbers
(LLN) states that, in the long run, the event A will happen ap-
proximately 100p% of the time. In other words, if we repeat an
experiment a large number of times then the fraction of times
the event A occurs will be close to P(A).
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Definition
iment. If welconduct a sequence of n independent trials of this
experiment, ahd if the event A occurs in N(A,n) out of these n
trials, then the¢ fraction N(A, h)

R(A ) =

.22. Let A be one of the events of a random exper-

"
is called the relative frequency of the event A in these n trials.

1.23. The long-run frequency interpretation mentioned in [1.2]]
can be restated as
N(A,n
P(4) “= lim A,
n—oo mn

1.24. Another interpretation: The probability of an outcome can
be interpreted as our subjective probability, or degree of belief,
that the outcome will occur. Different individuals will no doubt
assign different probabilities to the same outcomes.

1.25. In terms of practical range, probability theory is comparable
with geometry; both are branches of applied mathematics that
are directly linked with the problems of daily life. But while pretty
much anyone can call up a natural feel for geometry to some extent,
many people clearly have trouble with the development of a good
intuition for probability.

e Probability and intuition do not always agree. In no other
branch of mathematics is it so easy to make mistakes
as wn probability theory.

e Students facing difficulties in grasping the concepts of prob-
ability theory might find comfort in the idea that even the
genius Leibniz, the inventor of differential and integral cal-
culus along with Newton, had difficulties in calculating the
probability of throwing 11 with one throw of two dice. (See

Ex. 3.4)

21), p 4]
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Summary:
° Ingredient of Probability Theory:

Random experiment

Outcome W each outcome represent a result from the experiment

Sarnple space () —collection (set) of all possible outcomes

Event A ——— collection of outcomes that meets some speciﬁcations
L (c )

define outcomes of interest from a random experiment
P(A) = probability of event A
For a random experiment and a specific event 4,
when the experiment has been performed,
the event may occur or not occur.

The probability that it occurs is denoted by P (4).

\_

o
)

Summary:

® Q: How do we interpret the value of probability?
What does the value of P(A) tells us about event A?

° A: “long—run frequency interpretation”
Repeat the experiment 7 times (1 should be large).
Count the “fraction of times that A occurs” among these

n repetitions.t
This is called the “relative frequency” of event A.
Law of Large Numbers (LLN)
Asn — 0, the relative frequency of event A will converge to P (A4).
When n is not 0, but large, the fraction should be close to P (A).




